A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

نویسندگان

  • X. Tian
  • Z. Xie
  • Y. Liu
  • Z. Cai
  • Y. Fu
  • H. Zhang
  • L. Feng
چکیده

We have developed a novel framework (“TanTracker”) for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOSChem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our TanTracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Document : CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHERE - VEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

Title of Document: CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHEREVEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER Ji Sun Kang, Doctor of Philosophy, 2009 Directed By: Professor Eugenia Kalnay Department of Atmospheric and Oceanic Science We develop and test new methodologies to best estimate CO2 fluxes on the Earth’s surface by assimilating observations of atmospheric ...

متن کامل

A global carbon assimilation system using a modified ensemble Kalman filter

A Global Carbon Assimilation System based on the ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments, including inclusion of atmospheric CO2 concentration in state ...

متن کامل

Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are parti...

متن کامل

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

[1] Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model a...

متن کامل

Forecasting global atmospheric CO2

A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for MediumRange Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014